kc sinha 12th math solution pdf download

kc sinha 12th math solution pdf download

Relation

Question 1

(i) माना कि A={1,9} , B={5,13} तथा R={(a,b):a∈A,b∈B तथा a-b}से विभाज्य है । दिखाएँ कि R,A  से B मे सार्वत्रिक सम्बन्ध है ।
Sol :
1-5=-4, 4 से विभाजय है ।
1-13=-12, 4 से विभाजय है ।
9-5=4 , 4 से विभाजय है ।
9-13=-4 , 4 से विभाजय है ।

R={(1,5),(1,13),(9,5),(9,13)}

R=A×B

∴ R, A से B मे universal relation हैं ।

(ii) माना कि A={1,5}, B={3,7} तथा R={(a,b):a∈A,b∈B तथा a-b,4 का अपवर्त्य है ।} दिखाएँ कि ,R,A से B मे रिक्त सम्बन्ध है ।
Sol :
1-3=-2, 4 का अपवर्त्य नहीं है।

1-7=-6, 4 का अपवर्त्य नहीं है।

5-3=2, 4 का अपवर्त्य नहीं है।
5-7=-2, 4 का अपवर्त्य नहीं है।

R=ϕ

∴  R, A से B मे empty relation हैं ।

Question 2

माना कि लड़को के किसी विद्यालय के सभी लड़को का समुच्चय A है । दिखाएँ कि समुच्चय A पर निम्न प्रकार परिभाषित सम्बन्ध R
(i) R={(a,b):a,b की बहन है } A मे एक रिक्त सम्बन्ध है ।
(ii) R’={(a,b):a औऱ b के ऊँचाइयो का अन्तर 3 मीटर से कम है }A पर एक सार्वत्रिक सम्बन्ध है ।
Sol :
(i) A=सभी लड़को का समुच्चय

माना a,b की बहन है ।

a∉A

R=ϕ

∴ R is a empty relation

(ii)
∴R’=A×A

∴R’ is a universal relation

Question 3

Let A={1,2,3} and R be a relation on A defined by aRb⇔a=b.Show that R is an indentity relation on A
Sol :
R={(a,b): a,b∈A and a=b}

R={(1,1),(2,2),(3,3)}

∴ एक तत्समक सम्बन्ध है ।

Question 4

Let R be a relation from Q into Q defined by
R={(a,b):a,b∈Q and a-b∈Z}. Show that
(i) (a,a)∈R for all a∈Q
Sol :
(a,a)∈R⇒a-a=0∈R,∀a∈Q

(ii) (a,b)∈R⇒(b,a)∈R
Sol :
(a,b)∈R⇒
a-b∈Z
Then b-a∈Z
(b,a)∈R

i.e.
(43,13)∈R⇒43−13=1∈Z

then 13−43=−1∈R

(11,43)∈R

(iii) (a,b)∈R,(b,c)∈R⇒(a,c)∈R
Sol :
(a,b)∈R⇒a-b∈Z

and (b,c)∈R⇒b-c∈Z

Then (a,c)⇒a-c∈Z

i.e.
(73,43)∈R⇒73−43=1∈Z

and (43,13)∈R⇒43−13=1∈Z

(73,13)∈R⇒73−13=2∈Z

Question 5

Let A={1,2,3} and R1={(1,2),(2,2),(1,3),(3,2)}

R2={(3,3),(2,1),(1,2)}

R3={(1,2)},R4={(1,1)}

Which of these relations are reflexive , symmetric and transitive ?
Sol :
(i) R1={(1,2),(2,2),(1,3),(3,2)}

(a) For reflexive 
(1,1)∉R1

∴R1 reflexive नहीं है ।

(b) For symmetric
(1,2)∈R1⇒(2,1)∉R1

∴R1 symmetric नहीं है ।

(c) For transitive

R1 is transitive.

Question 7

Determine whether each of the following relations are reflexive, symmetric and transitive.

(i) <to be added>
Sol :
(a) For reflexive 
x-x=0∈Z
(x,x)∈R ,∀x∈Z

∴ R reflexive है ।

(b) For symmetric
(x,y)∈R⇒x-y∈Z,∀x,y∈Z

then (y,x)∈R⇒y-x∈Z,∀x,y∈Z

∴ R symmetric है ।

i.e.
(2,1)∈R
2-1=1∈Z

(1,2)∈R
1-2=-1∈Z

(c) For transitive
(x,y)∈R and (y,z)∈R,∀,x,y,z∈Z

x-y∈Z and y-z∈Z⇒x-z∈Z ,(x,z∈R)

∴ R transitive है ।

i.e.
2-3=-1∈Z
3-4=-1∈Z
2-4=-2∈Z

(ii) <to be added>
Sol :
R={(a,b) b=a+1 ; a,b∈A}

b=a+1; a=1⇒b=1+1=2
a=2⇒b=2+1=3
a=3⇒b=3+1=4
a=4⇒b=4+1=5
a=5⇒b=5+1=6

R={(1,2),(2,3),(3,4),(4,5),(5,6)}
(i)(1,1)∉R
(ii)(1,2)∈R⇒(2,1)∉R
(iii)(1,2)∈R and (2,3)∈R⇒(1,3)∉R

(iii) <to be added>
Sol :
(i) For reflexive
(x,x)∈R,x÷x=1
i.e.
x,x से भाजय है ।

∴ R reflexive है ।

(ii) For symmetric
(x,y)∈R⇒y,x से भाजय है ,
(y,x)∉R⇒x,y से भाजय नहीं है

i.e.
4,2 से भाजय है
2,4 से भाजय नहीं है

(iii) For transitive
(x,y)∈R and (y,z)∈R ,∀x,y,z∈A

∴z,x से भाजय होगा ।
(x,z)∈R

∴R is transitive

(iv) <to be added>
Sol :
x,y∈A :
2x-y=10
2x-10=y

x=6⇒y=2(6)-10=2
x=7⇒y=2(7)-10=4
x=8⇒y=2(8)-10=6
x=9⇒y=2(9)-10=8
x=10⇒y=2(10)-10=10

R={(6,2),(7,4),(8,6),(9,8),(10,10)}

(i) For reflexive
(1,1)∉R
∴R is not reflexive

(ii) For symmetric
(6,2)∈R⇒(2,1)∉R
∴R is not symmetric

(iii) For transitive
(9,8)∈R and (8,1)∈R
(9,6)∉R
∴R is not transitive

(vi) <to be added>
Sol :
x,y∈N and y=x+5, x<4
x=1,2,3

x=1⇒y=1+5=6
x=2⇒y=2+5=7
x=3⇒y=3+5=8

R={(1,6),(2,7),(3,8)}

Question 8

Determine whether each of the following relations on the set A of all human beings in a town at a particular time are reflexive, symmetric and transitive :

(i)R1={(x,y):x is wife of y}
Sol :
(i) For reflexive
(x,x)∉R1⇒x,x की पत्नी है ।
∴R1 is not reflexive

(ii) For symmetric
(x,y)∈R1⇒x,y की पत्नी है ।
⇒y,x की पत्नी है ।
⇒(y,x)≠R1
∴R1 is not symmetric

(iii) For transitive :
(x,y)∈R1 and (y,z)∈R1
⇒x,y की पत्नी है और y,z की पत्नी है
⇒x,z की पत्नी है
⇒(x,z)∈R1

∴R1 is transitive

(ii)R2={(x,y):x is father of y}
Sol :
माना x,y,z तीन ही नगर के वासी हो ।
x,y,z∈A

(i) For reflexive
(x,x)∉R2⇒x,x का पिता नहीं हो सकता है ।

∴R2 is not reflexive

(ii) For symmetric
(x,y)∈R2⇒x,y के पिता है ।
⇒y,x के पिता है
⇒(y,x)∉$R_{2}$

∴R2 is not symmetric

(iii) For transitive
(x,y)∈R2 and (y,z)∈R2
⇒x,z के पिता है और y,z के पिता है ।
⇒x,z के दादा है ।
⇒(x,z)∉R2

∴R2 is not transitive

(iii)R3={(x,y):x and y live in the same locality}
Sol :
माना x,y,z तीन एक ही नगर के है ।
x,y,z∈A

(i) For reflexive
(x,x)∈R3⇒x तथा x एक ही मुहल्ले में रहते है ।
∴ R3 is reflexive

(ii) For symmetric
(x,y)∈R3⇒x तथा y एक ही मुहल्ले में रहते है ।
⇒(y,x)∈R3
∴ R3 is symmetric

(iii) For transitive
(x,y)∈R3 and (y,z)∈R3
⇒x तथा y एक ही मुहल्ले मे रहते है और y तथा z एक ही मुहल्ले मे रहते है
⇒x तथा z एक भी ही मुहल्ले मे रहते है
⇒(x,z)∈R3
R3 is transitive

(v)R5={(x,y):x is 7cm taller than y}
Sol :
(i) For reflexive
(x,x)∉R5⇒x,x से 7cm लंबा नहीं हो सकता है ।

∴R5 is not reflexive

(ii) For symmetric:
(x,y)∈Rs⇒x,y से 7cm लंबा है ।
⇒y,x  से 7cm लंबा नहीं हो सकता है ।
⇒(y,x)∉R5
∴R5 is not symmetric

(iii) For transitive
(x,y)∈R5 and (y,z)∈R5
⇒x,y से 7cm लंबा है तथा y,z से 7cm लंबा है ।
⇒x,y से 14cm लंबा है ।
⇒(x,z)∉R5
∴R5 is not transitive

Question 9

(i) <to be added>
Sol :
(i) For reflexive
(a,a)∈R1⇒a≤a is always true
∴R1 is reflexive

(ii) For symmetric
(a,b)∈R1⇒a≤b
⇒b≰a
⇒(b,a)∉R
∴R1 is not symmetric

(iii) For transitive:
(a,b)∈R1 and (b,c)∈R1
⇒a≤b and b≤c
⇒a≤c
⇒(a,c)∈R1
∴R1 is transitive

(ii) Show that the relation R2 in the set of all real numbers R defined as
R={(a,b):a≤b2} is neither reflexive nor symmetric nor transitive
Sol :
माना a,b,c तीन वास्तविक संख्याएँ है।
a,b,c∈R
(i) For not reflexive
⇒(a,a)∉R2⟺a≰a2
∴R2 is not symmetric

i.e.
12≤(12)2
12≤14

(ii) For not symmetric
(a, b)∉R2⇒a≤b2
⇒b2≰a
⇒(b,a)∉R2
∴R2 is not symmetric

(iii) For not transitive

(a,b)∈R2 and (b,c)∈R2

⇒a≤b2 and b≤c2

⇒a≰c2

⇒(a,c)∉R2

∴R2 is not transitive

Question 10

Show that the relation R in the set {1,2,3} given by R={(1,2),(2,1)}
is symmetric but neither reflexive nor transitive.
Sol :
R={(1,2),(2,1)}

(i) For symmetric
(1,2)∈R⇒(2,1)∈R
∴ R is symmetric

(ii) For not reflexive
(1,1)∉R,(2,2)∉R
∴ R is not reflexive

(iii) For not transitive
 (1,2)∈R and (2,1)∈R
(1,1)∉R
∴R is not transitive

(ii) Show that the relation R in the set {1,2,3} given by
R={(1,1),(2,2),(3,3),(1,2),(2,3)}
is reflexive but neither symmetric nor transitive
Sol :
R={(1,1),(2,2),(3,3),(1,2),(2,3)}

(i) For reflexive
(1,1)∈R,(2,2)∈R,(3,3)∈R
∴R is reflexive

(ii) For not symmetric
(1,1)∈R⇒(2,1)∉R
∴R is not symmetric

(iii) For not transitive
(1,2)∈R,(2,3)∈R
⇒(1,3)∉R
∴R is not transitive

Question 11

Let S be the set of all points in a plane and R be a relation in S defined as
R={(a, b): distance between points a and b is less than 2units. Show that R is reflexive and symmetric but not transitive.
Sol :
माना a,b तथा c तीन बिंदु एक एक तल मे स्थित है ।
a,b,c∈S
(i) For reflexive 

(a,a)∈R⇒a तथा a के तीन की दूरी 2 unit से कम है ।

∴R is reflexive

(ii) For symmetric
(a,b)∈R⇒a तथा b के बीच की दूरी 2 unit से कम है ।
⇒b तथा a के बीच की दूरी 2 unit से कम है ।
⇒(b,a)∈R
∴R is not transitive

Question 12

Write True or False for each of the following statements:
(i) The relation “is greater than” in the set of integers is reflexive.
Sol :
असत्य

(ii) The relation ‘is a factor of ‘ in the set of positive integers is symmetric
Sol :
असत्य

(iii) The relation ‘is similar to’ in the set of triangles is transitive.
Sol :
सत्य

(iv) The relation ‘is perpendicular to’ in the set of lines is transitive.
Sol :
असत्य

(v) Identity relation on a nonempty set A is reflexive
Sol :
सत्य

(vi) Every reflexive relation on a nonempty set A is identity relation on A.
Sol :
असत्य

(vii) Identity relation on a non empty set A is symmetric
Sol :
सत्य

Question 13

Given Example of a relation which is
(i) Symmetric and transitive but not reflexive.
(ii) Symmetric but neither reflexive nor transitive.
(iii) Transitive but neither symmetric nor reflexive
(iv) Reflexive and symmetric but not transitive
Sol :
माना A={1,2,3}
(i) R1={(1,1),(2,2)}

(ii) R2={(1,3),(3,1)}

(iii) R3={(1,2)}

(iv) R4={(1,1),(2,2),(3,3),(2,3),(3,2),(3,1),(1,3)}

(v) R5={(2,2),(2,3),(3,1)}

Question 14

Write True or False for each of the following statement
(i) An identity relation on a non empty set A is an equivalence relation
Sol :
True (सत्य)

A={1,2,3}
I={(1,1),(2,2),(3,3)}

(ii) Universal relation on a non empty set A is an equivalent relation
Sol :
R=A×A={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

Question 15

Let a relation R be defined on set Z of integers by
x R y⇔x=y∀x,y∈Z

माना x,y,z∈Z

(i) For reflexive:
(x,y)∈R⇒x=x is always true
∴R is reflexive

(ii) For symmetric
(z,y)∈R⇒x=y
⇒y=x
⇒(y,x)∈R
∴R is symmetric

(iii) For transitive
(x,y)∈R and (y,z)∈R
⇒x=y and y=z
⇒x=z
⇒(x,z)∈R
∴R is transitive

Question 16

Let relation R be defined on set Z of integers by
xRy⇔x-y is an even integer. Is R an equivalence relation?
Sol :
R={(x,y): x-y एक समपूर्णांक है तथा x,y∈z}

माना x,y,z∈z

(i) For reflexive

(x,x)∈R⇒x-x=0 एक समपूर्णांक है

∴R is reflexive

(ii) For Symmetric
(x,y)∈R⇒x-y एक समपूर्णांक है
⇒-(x-y) एक समपूर्णांक है
⇒y-x एक समपूर्णांक है
⇒(y,x)∈R
∴R is symmetric

(iii) For transitive
(x,y)∈R and (y,z)∈R
⇒x-y एक समपूर्णांक है y-z एक समपूर्णांक है
⇒x-z एक समपूर्णांक है
⇒(x,z)∈R
∴R is transitive

Hence , R is equivalence relation

Question 17

Show that the relation “is congruent to”, on the set of all triangles in a plane is an equivalence relation.
Sol :
R={(Δ12): Δ1≅Δ2 ,जहाँ Δ1 तथा Δ2 एक तल में स्थित हैं}

माना Δ12 तथा Δ3 एक तल में स्थित हैं ।
(i) For reflexive
12)∈R⇒Δ1≅Δ2 is always true
∴R is reflexive

(ii) For symmetric
12)∈R⇒Δ1≅Δ2
⇒Δ1≅Δ2
⇒(Δ1≅Δ2)∈R
∴R is symmetric

(iii) For transitive
12)∈R and (Δ23)∈R
⇒(Δ1≅Δ2) तथा (Δ2≅Δ3)
⇒Δ1≅Δ3
⇒(Δ1≅Δ3)∈R
∴R is transitive

Hence , R is an equivalence relation

Question 18

Let A be the set of all books in a library and R be a relation on A defined as
R={(x,y):x and y have same number of pages}.Show that R is an equivalence relation
Sol :
R={(x,y)x और y मे पुस्तको की संख्या समान हैं}

माना x,y,z तीन पुस्तके हैं और x,y,z∈A

(i) For reflexive
(x,x)∈R⇒x और x मे पुस्तको की संख्या समान हैं
∴R is reflexive

(ii) For symmetric
(x,y)∈R⇒x और y मे पुस्तको की संख्या समान हैं
⇒y और x मे पुस्तको की संख्या समान हैं
⇒(y,x)∈R
∴R is symmetric

(iii) For transitive
(x,y)∈R and (y,z)∈R
⇒x और y मे पुस्तको की संख्या समान हैं और y तथा z मे पुस्तको की संख्या समान हैं
⇒x और z मे पुस्तको की संख्या समान हैं
⇒(x,z)∈R
∴R is transitive

Hence, R is an equivalence relation

Question 19

Prove that the relation of ‘congruence modulo m‘ in the set of integers Z is an equivalence relation
Sol :
माना , R={(a,b):a≅b(mod m)}∀a,b∈Z

माना a,b तथा c तीन पूर्णांक है और a,b,c∈Z

(i) For reflexive
(a,a)∈R⇒a≅a(mod m)⇒a-a=0 ,m से विभाजय है
∴R is reflexive

(ii) For symmetric
(a,b)∈R⇒a≅b(mod m)⇒a-b=0 ,m से विभाजय है ।
⇒b-a, m से विभाजय है ।
⇒b≅a(mod m)
⇒(b,a)∈R
∴R is symmetric

(iii) For transitive
(a,b)∈R and (b,c)∈R
⇒a≅b(mod m) and b≅c(mod m)
⇒a-b, m से विभाजय है और b-c,m से विभाजय है ।
⇒a≅c(mod m)
⇒(a,c)∈R
∴R is transitive
Hence,R is an equivalence relation

Question 21

Let A be the set of all the points in a given plane. A relation R is defined on A by PRQ⇔P and Q are equidistant from the origin i.e.
R={(P,Q): P and Q are equidistant from the origin}.Show that R is an equivalence relation .Further show that the set of all points related to a point P≠O(0,0) is the circle passing through P with origin as centre.
Sol :
R={(P,Q):P तथा Q मूल बिन्दु से समान दूरी पर है}

माना p,Q तथा S तीन बिंदु किसी तल में स्थित है और P,Q,S∈A
(i) For reflexive
(P,P)∈R⇒P तथा P मूल बिन्दु से समान दूरी पर है
∴R is reflexive

(ii) For symmetric
(P,Q)∈R⇒P तथा Q मूल बिन्दु से समान दूरी पर है
⇒Q तथा P मूल बिन्दु से समान दूरी पर है
⇒(Q,P)∈R
∴R is symmetric

(iii) For transitive
(P,Q)∈R and (Q,S)∈R
⇒P तथा Q मूल बिन्दु से समान दूरी पर है और Q तथा S मूल बिन्दु से समान दूरी पर है
⇒P तथा S मूल बिन्दु से समान दूरी पर है
⇒(P,S)∈R
∴R is transitive
Hence,R is an equivalence relation

∵हम जानते है , कि वृत्त पर स्थित बिंदु से केनद्र समान दूरी पर होता है

OP=OQ=OS=r

Diagram
O(0,0)SQPrrr

<to be added>

Question 22

Is the relation R defined on the set Q* of non-zero rational number, by
xRy⇔xy=1∀x,y∈Q*; an equivalence relation ?
Sol :
R={(x,y): xy=1∀x,y∈Q}

For reflexive
(x,x)∉R
⇒x.x=x2≠1,∀x∈Q

i.e.
(12,12)∉R
⇒12×12=14≠1
∴R is not reflexive

Question 23

Let N be the set of natural numbers. Let a relation R be defined on N×N by
(a,a)R(c,d)⇔ad=bc, prove that R is an equivalence relation
Sol :
माना a,b,c,d,e,f प्रकृत संख्याएँ है ,
(a,b),(c,d).(e,f)∈R

(i) For reflexive
(a,b)R(a,b)
⇒ab=ba<to be added>
∴(a,b)R(a,b)∀(a,b)∈R
∴R is reflexive

(ii) For symmetric
(a,b)R(c,d)⇒ad=bc
⇒bc=ad
⇒cb=da
⇒(c,d)R(a,b)
∴R is symmetric

(iii) For transitive
(a,b)R(c,d) and (c,d)R(e,f)
⇒ad=bc and cf=de
⇒adcf=bcde
⇒(af)(cd)=(be)(cd)
⇒af=be
⇒(a,b)R(e,f)
∴R is transitive
Hence, R is an equivalence relation

Question 24

(i) Is the relation ‘>’ defined on N an equivalence relation?
Sol :
Let R={(a,b): a>b,∀a,b}∈N

(ii) Show that in the set of real number the relation ‘>’ is transitive but not reflexive
Sol :
R={(a,b): a>b,∀a,b∈R}

Question 25

Let a relation R’ in the set of real numbers be defined by
xR’y⇔1+xy>0. Show that R’ is reflexive and symmetric but not transitive
Sol :
R={(x,y): 1+xy>0,x,y∈R}

माना x,y,z तीन वास्तविक संख्याएँ है ।
x,y,z∈R
(i) For reflexive
(x,x)∈R
⇒1+x.x=1+x2>0
∴R is reflexive

(ii) For symmetric
(x,y)∈R⇒1+xy>0
⇒1+yx>0
⇒(y,x)∈R
∴R is symmetric

(iii) For transitive
(x,y)∈R and (y,z)∈R
⇒1+xy>0 and 1+yz>0
⇒1+xz≰0

i.e.
(12,−13),∈R and (−13,−6)<R
⇒1+12×(−13)>0 and 1+(−13)(−6)>0
⇒1+12(−6)=1-3
=-2<0
⇒(12,−6)∉R

Question 26

Let a relation R in the set of natural numbers N be defined by
mRn⇔(m-n)(m-3n)=0. Is R an equivalence relation ?
Sol :
R={(m,n):(m-n)(m-3n)=0,m,n∈N}

माना m,n तथा p तीन प्राकृत संख्याए है ।
m,n,p∈N

(i) For reflexive
(m,m)∈R⇒(m-n)(m-3n)=0
∴R is reflexive

(ii) For symmetric
(m,n)∈R⇒(m-n)(m-3n)=0
⇒(n-m)(m-3n)≠0
⇒(m,m)∉R
∴R is not symmetric

i.e.
m=9,n=3
(9,3)∈R
⇒(9-3)(9-3×3)=0
⇒(3-9)(3-3×9)≠0
(3,9)∉R

Hence, R is not equivalence relation

Question 27

Let f:X→Y be a function. Define a relation R in X as
R={(a,b):f(a)=f(b)}
Examine , if R is an equivalence relation
Sol :
R={(a,b):f(a)=f(b),∀a,b∈X}

(i) For reflexive
(a,a)∈R⇒f(a)=f(a) is always true ∀a∈X
∴R is reflexive

(ii) For symmetric
(a,b)∈R⇒f(a)=f(b)
⇒f(b)=f(a)
⇒(b,a)∈R,∀a,b∈X
∴R is symmetric

(iii) For transitive
(a,b)∈R and (b,c)∈R,∀a,b,c∈X
⇒f(a)=f(b) and f(b)=f(c)

⇒f(a)=f(c)

⇒(a,c)∈R,∀a,c∈X

∴R is transitive

Question 28

<to be added>
Sol :
R={(a,b).|a-b| सम है}
|1-3|=|-2|=2 सम है⇒(1,3)∈R
|1-5|=|-4|=2 सम है⇒(1,5)∈R
|3-1|=|2|=2 सम है⇒(3,1)∈R
|5-1|=|4|=4 सम है⇒(5,1)∈R
|3-5|=|-2|=2 सम है⇒(3,5)∈R
|5-3|=|2|=2 सम है⇒(5,3)∈R
|2-4|=|-2|=2 सम है⇒(2,4)∈R
|4-2|=|2|=2 सम है⇒(4,2)∈R
|1-1|=0 सम है⇒(1,1)∈R
|2-2|=0 सम है⇒(2,2)∈R
|3-3|=0 सम है⇒(3,3)∈R
|4-4|=0 सम है⇒(4,4)∈R
|5-5|=0 सम है⇒(5,5)∈R

R={(1,3),(1,5),(3,1),(5,1),(3,5),(5,3),(2,4),(4,2),(1,1),(2,2),(3,3),(4,4),(5,5)}

Question 30

Show that the relation R in the set
A={x∈Z:0≤x≤12 given by
R={a,b}:a=b is an equivalence relation. Find set of all elements related to 1
Sol :
A={0,1,2,3…12}

R={(a,b):a=b}

R={(0,0),(1,1),(2,2),(3,3)…(12,12)}

(i) For reflexive
(a,a)∈R,∀a∈A
∴R is reflexive

(ii) For symmetric
(a,b)∈R⇒a=b
⇒b=a
⇒(b,a)∈R,∀a,b∈A
∴R is symmetric

(iii) For transitive:
(a,b)∈R and (b,c)∉R
∴R is transitive
Hence, R is an equivalence relation

Question 31

Let A={1,2,3}. Then show that the number of equivalence relations on A containing (2,3) and (3,2) is 2
Sol :
A={1,2,3}

A×A={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

(2,3) तथा (3,2) को शामिल करने वाले न्यूनतम <to be added> वाला equivalence relation

R1={(1,1),(2,2),(3,3),(2,3),(3,2)}

अब A×A में 4 <to be added> (1,2),(1,3),(2,1),(3,1) <to be added>

यदि R1में (1,2) शामिल करे तो सममित होने के लिए (2,1) भी <to be added>

R2={(1,1),(2,2),(3,3),(2,3),(3,2),(2,1),(1,2),(1,3),(3,1)}

(2,3) तथा (3,2) को शामिल करते हुए equivalence relation की संख्या 2 है ।

Question 32

Let A={a,b,c}. Then show that the number of relation on A containing (b,c) and (c,a) which are reflexive and transitive but not symmetric is 4
Sol :
A×A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)}

(b,c) तथा (c,a) को शामिल करने वाले reflexive, transitive and not symmetric होने वाले संबंध जिलके अवयवो की संख्या न्यूनतम है ।

R1={(a,a),(b,b),(c,c),(b,c),(c,a),(b,a)}

R1 मे (c,b) को शामिल करने पर

R2={(a,a),(b,b),(c,c),(b,c),(c,a),(b,a),(a,b)}

Rमे (a,c) तथा (c,b) शामिल करने पर

R={(a,a),(b,b),(c,c),(b,c),(c,a),(b,a),(a,b),(c,b)}

(b,c) तथा (c,a) को शामिल करते हुए reflexive , transitive but not symmetric संबंधो की संख्या 4 है ।

Relation

Leave a Reply

Your email address will not be published. Required fields are marked *